Methane slip reduction technologies and the enabling conditions for renewable hydrogen-derived fuels

Zhihang Meng, ICCT, Researcher 2024.10.22

HKUST

Background——why we need green fuel for shipping

IMO's GHG strategy target

- To reach the IMO's GHG strategy target, the GHG emission intensity of fuel must be reduced by at least 18% by 2030, and by 72% by 2040.
- To get 1.5°C-aligned target, even higher GHG reduction of fuel.

https://theicct.org/aligning-the-imos-greenhouse-gas-fuel-standard-with-its-ghg-strategy-and-the-paris-agreement-jan 24/

The methane slip from LNG ships, and reduction technologies

Alternative fuel ship market (2023-2026)

For the ships to be delivered 2023-2026:

- In GT, over 60% of new-built ships are still conventional fossil-fuel ships.
- Over 85% of the alternative fuel ships are LNG ships.
- Besides LNG ships, methanol looks a main choice in the next few years.

Marine LNG engines come in two main varieties; unfortunately, the most popular (and cheapest) engine type is the leakiest

 Lean Burn Spark Ignited engines (LBSI); Low Pressure Dual Fuel engines (LPDF); High Pressure Dual Fuel engines (HPDF); Steam Turbine engines (ST)

Least leaky:	Most leaky:	
HPDF: High-pressure, dual fuel, 2-stroke, slow- speed (<100 rpm)	LPDF: Low-pressure, dual fuel, 4-stroke, medium- speed (~500 rpm)	
~0.15% methane slip	~3.5 to ~4.5% methane slip	
>90 ships, mainly LNG carriers, as well as container ships	>400 ships, mainly LNG carriers as well as cruise ships	

LNG' s life-cycle GHG reduction potential is limited due to methane slip

Life-cycle GHG emissions by engine and fuel type, 100-year GWP

*SSD has similar life-cycle emissions as HPDF for conventional fuels.

Life-cycle GHG emissions by engine and fuel type, 20-year GWP

Pavlenko et al. (2020). *The climate implications of using LNG as a marine fuel*. Available at the International Council on Clean Transportation website at <u>https://theicct.org/publications/climate-impacts-LNG-marine-fuel-2020</u>

The real-world methane slip might be worse than we thought

Real-world fugitive emissions from LNG ship:

- Methane slip from low pressure 4-stroke (L4) LNG engine with mean value of 6.42%
- Comparing to the assumption in FuelEU and IMO's work (3.1% and 3.5%), the real-world methane slip is even worse.

Note: Dot shows outliers; whiskers show minimum and maximum (excluding outliers); circle inside box is the average; horizontal line is the median; box is the interquartile range.

Methane slip reduction technologies

- Engine technologies
 - high pressure (direct) injection
 - exhaust gas recirculation (EGR)
 - o engine tuning and control software
- After-treatment technologies
 - Methane oxidation catalyst (MOC)
 - Plasma reduction systems (PRS)

Limits/challenges of the technologies

	Engine Optimization (20%)	Methane Oxidation Catalysts (70%)	Direct gas injection (90%+)	
How	Optimize combustion.	Convert CH_4 to CO_2 and H_2O .	Inject gas into the cylinder at high pressure.	
Tradeoff	Increased NO _x emissions.	Additional capital, operating, and maintenance costs.	Requires NO _x aftertreatment, increasing capital, operating, and maintenance costs.	
Limitation	Could require expensive exhaust aftertreatment technologies for NO _x compliance.	Pilot fuels and lubrication oils contain contaminants that can render MOCs ineffective. Work poorly under low temperature.	High costs of retrofitting, including downtime.	
Verdict	Plausible	Unlikely	Unlikely	

Enabling conditions for renewable hydrogen-derived fuels

Cost challenges for renewable hydrogenderived fuels

- For now, the cost of the renewable hydrogen-derived fuels are much higher than conventional fossil fuels
- With maturity of technologies, the cost would not reach breakeven point
- Incentive policies/punishment policies would be essential

Medium-term measures from IMO under development

Basket of candidate mid-term GHG reduction measures:

MEPC 80 (3-7 July 2023) adopted the 2023 IMO Strategy on Reduction of GHG Emissions from Ships. The 2023 GHG Strategy states that a basket of candidate measure(s), delivering on the reduction targets, should be developed and finalized comprised of both:

1. a technical element, namely a goal-based marine fuel standard regulating the phased reduction of the marine fuel's GHG intensity;

2. an economic element, on the basis of a maritime GHG emissions pricing mechanism.

Regulation under FuelEU Maritime

https://te-cdn.ams3.digitaloceanspaces.com/files/202307_FUEM_Explainer_Briefing_2023_TE.pdf

14

EU-ETS

- Since 2024, covering maritime transport
- Shipping companies have to surrender allowances for GHG emissions
- The levy will be reallocated to support shipping decarbonization in EU

https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector/faq-maritime-transport-euemissions-trading-system-ets_en#buying-and-surrendering-allowances-in-the-union-registry

Enabling conditions in China

- In 2024, Astrid Maersk berthed at Yangshan port in Shanghai for the first green methanol bunkering with simultaneous cargo and bunkering operations in China.
- With over 100 green-methanol production projects, over 50 million tonnes capacity
- August 2024, National Energy Administration published 'Tackle key problems of green liquid fuel technology and pilot industrialization', providing loan support, and CCER support

New incentive policy in China

- Broader coverage to all sized ships
- Broader coverage for new/clean energy ship

交通运输部 国家发展改革委关于印发《交通运输老旧营运船舶报废更新补贴实施细则》

的通知

交规划发〔2024〕95号

	Subsidy policy year	ship type	DWT (tonne)	GT (tonne)	ship age (year)	
Qualification requirements of subsidy to early scrapping	2015	coastal ship	 ≥600 for single- hull oil tanker none for others 	≥1,000 for others	1-10 years before mandatory retirement	
	2024		1	/	20-30 for cargo ship15-25 for passenger ship	
	2015	inland-river ship	 ≥600 for single- hull oil tanker none for others 	 ≤200 for ship in Beijing- hangzhou Canal trunk line ≤300 for ship in Xijiang trunk line none for others 	 15-30 for cargo ship, 15-36 for cargo ship in Heilongjiang River system 10-25 for passenger ship 15-30 for cargo ship 	
	2024		1	1	• 10-25 for passenger ship	
Qualification requirements of subsidy to new- built ship	2015 2024	coastal ship	1	≥GT of the early scrapped one		
	2015 2024	inland-river ship	 	≥400 /	 	
		New/clean energy options				
Additional subsidy	2015	LNG				
to new-built new/clean energy ship	2024	Methanol, hydrogen, ammonia, LNG, battery-electric				

New incentive policy in China

- Stronger support comparing to previous policy in 2015
- More subsidy to new-built new/clean energy ship

Conclusions

LNG ships

- LNG's life-cycle GHG reduction potential is limited due to methane slip
- Even with methane slip reduction technologies, fossil-based LNG will not be a finally option

Enabling renewable hydrogen-derived fuels

 There are economic policies/fuel regulations exist/coming soon, enabling the application of renewable hydrogen-derived fuels, both from international and China domestic perspectives.

Thanks! z.meng@theicct.org

