* Map inside Hong Kong only

[Note: this is not a basic level App Inventor tutorial. Readers are advised to write one or two basic level apps before trying this one.]

PRAISE-HK' API is a web service for providing air quality information with high data-density? (down to street level) and high accuracy?, and is able to provide
48-hour forecasted air quality information.

To access PRAISE-HK data, our team has developed an “extension*” - namely “PRAISE_HK_web” for users to access our data. This tutorial aims to demonstrate

how to calculate the air pollution exposure risk based on the planned route. The exposure is obtained through an advanced PRAISE-HK web service which
leverages the more basic level air quality information.

Approach Overview

1. We use a map to plan the route. The route is found by: first clicking two points on the map; then using a navigation component to plan a route between
these two points.

2. After the route is obtained, we send it to the PRAISE-HK API to calculate the corresponding exposure.

3. After the results are returned (actual implementation is a series of results), we check if they are valid. Then displaying the value after a bit of manipulation.

Okay, if you are ready, let’s get started!

Step 1. Getting an API Key

The route planning is provided by another web service called “openroute service”. In order to use it, we have to go to its official site: https://openrouteservice.ora/,
to open an account and acquire an API key. So, first of all, we click the above link and enter the site.

' PRAISE-HK is a short form for “Personalized Real-time Air-quality Informatics System for Exposure in HK” with the project goal to empower the public with personalized
air quality information.

2 High data-density: PRAISE-HK is able to provide air quality (and associated health risk) information up to 2-meter resolution.

® How accurate are PRAISE-HK predictions compared with data from Hong Kong’s air quality monitoring stations?

4 What is an “extension” here? An “extension” provides app developers additional information/components for advanced and extended app features. Please refer to the
following article for details.

http://praise.ust.hk/
https://openrouteservice.org/
http://ai2.appinventor.mit.edu/reference/other/extensions.html

o pe n ro u te v Donate Services Maps Jupyter Examples Ask us! Plans API Playground Dashboard Sign up

service

New York Times: Where the Subway Limits New Yorkers
With Disabilities

With the support of openrouteservice a New York Times analysis has found that two-thirds of 550,000 residents in
NY who have difficulty walking live far from an accessible subway stations.

Read the article

Crowd sourced Cutting edge Global coverage
We trust the wisdom of the crowd. Embedded within the University of Virtually speaking, our services will
The openrouteservice API Heidelberg, we have the unfair work anywhere. OpenStreetMap
consumes user-generated and advantage of developing our own features global street coverage, a
collaboratively collected free algorithms and using cutting edge whole world of addresses and all
geographic data, directly from open source technologies within different kinds of helpful
OpenStreetMap. the spatial domain. information we use to enrich your

We then click the “Sign up” (which is at the top-right corner of the page) to create an account.

CREATE AN ACCOUNT

o SIGN UP WITH GITHUB

or

Username

=]
f
E

Email*

First name* Last name*

= Sector

Website

Define your password

New password* O Confirm new password* ©

wn

=]
[]

B Subscribe to newsletter P | accept the terms of service

and was informed about the privacy policy

Fill in the required information and then use your registered email account (an activation email will be sent to this email account) to activate it. After activation and
signing in, you will be brought to a “Dashboard” page’s “TOKENS” tab.

o p e n ro Ute » Donate Services Maps Jupyter Examples Ask Us! Plans API Playground Dashboard (D

service —

Hi

Dev dashboard

TOKENS PROFILE

J» Name Key T Iz valid Remaining Quota Actions

You have no tokens yet. Why don ™t you create one now?

Use token actions to see quota or usage.

Request a token

Token type* ¥ Token name*

CREATE TOKEN &

At the bottom of the page, select a “Token type” (currently there is only one type to choose, which is “Free”) and enter a “Token name” (enter any name you like).
Next, press the “CREATE TOKEN” button.

Dev dashboard

TOKENS PROFILE

Jo Mame Key T Isvalid Remaining Quota Actions

token1 Sb e £ 5 Yes RO % A

Use token actions to see quota or usage.

Request a token

Token name*

Free ~ tokeni

CREATETOKEN &>

A token will then be created. The “Key” it contains will be used as the API key of your application. Don’t close this page yet, as you will use it shortly later.

After getting an API key, let us start a new project by naming it “CalculateExposure_fromMap”.

Step 2. User interface(Ul) design

After creating the project, we are automatically in the “Designer” tab.

2.1. Non-visible components:

First we have to import the PRAISE_HK_web extension.

Go to the ‘Palette’ = 'Extension’ and click ‘import extension’

Extension

Import extension

Then, from the box popped up, click the ‘URL’ button, and then input the following URL --
https://envf.ust.hk/~stcheng/PRAISE_HK_web/hk.ust.praise.web_v0.9.aix into the ‘Url’ textbox to import the extension.

From my computer -

Url:

Cancel Import

If the import is successful, the ‘Extension’ section will turn into this:

Extension

import extension

Q PRAISE_HK_web 7 [

Now, you should drag this onto the phone (like other components). And the extension is ready for use.
Next, we drag other non-visible components in the “Palette” column to the phone too.

‘User Interface’ = 'Notifier’ (this component displays various pop-up alert messages when the app needs to alert the user for some reason)
‘Connectivity’ = 'Web’' (this component enables the app to get/send data from/to the Web)

‘Sensors’ = ‘Clock’ (this component provides functionality of a clock)

‘Maps’ = ‘Navigation’ (this component is used for route planning)

N

The Non-visible components (at the bottom of the phone) should look like the following when completed:
Mon-visible components

Q A @ T 8

PRAISE_HK_web1 Notifier1 Web1 Clockl Mavigation1

After adding the “Navigation” component, go to its “Properties” column, and fill in its “ApiKey” field, using the key value you have just obtained at the “openroute
service” website above.

Properties

Mavigation

Apikey

s AT

With this, you can now use the “openroute service” for navigation for free (with quota, please refer to their website for details).

https://envf.ust.hk/~stcheng/PRAISE_HK_web/hk.ust.praise.web_v0.9.aix

2.2. Visible components:

Firstly, we click on the screen to choose the “Screen1” component, then go to the “Properties” column of “Screen1”, uncheck the “TitleVisible” checkbox. We don’t

need to show the title on the screen as this is a single screen application.

2.2.1. Top Area

In this area, we drag and drop the various visual components onto “Screen1”, and set the “Properties” as suggested in the following table:

Change Which Properties

1 ;i i i 2
Component Type Inside Which Component | Follow Which Component | Component Name of the Component
Layout / Screent HorizontalArrangement1 AlignHorizontal: Center
HorizontalArrangemen Width: Fill parent
t
User Interface / Button | HorizontalArrangement1 GetRouteAndExposure_Butto | Enabled: Unchecked
n Text: Click to get route &
exposure
User Interface / Label | HorizontalArrangement1 GetRouteAndExposure Butt | Label1 Text: {(empty)}?
on
User Interface / Button | HorizontalArrangement1 Label1 Reset_Button Enabled: Unchecked
Text: Reset
Layout / Screen1 HorizontalArrangement1 HorizontalArrangement2
HorizontalArrangemen
t
User Interface / Label | HorizontalArrangement2 RouteStatusName Text: Route :
User Interface / Label | HorizontalArrangement2 RouteStatusName RouteStatusValue Text: Nil
Layout/ Screen1 HorizontalArrangement2 HorizontalArrangement3
HorizontalArrangemen
t
User Interface / Label | HorizontalArrangement3 ExposureCalculationProgress | Text: Exposure Calculation
Name Progress :
User Interface / Label | HorizontalArrangement3 ExposureCalculationProgres | ExposureCalculationProgress | Text: 0%
sName Value
Layout / Screen1 HorizontalArrangement3 HorizontalArrangement4
HorizontalArrangemen
t
User Interface / Label | HorizontalArrangement4 ExposureName Text: Exposure :
User Interface / Label | HorizontalArrangement4 ExposureName ExposureValue Text: Nil

Annotation —

1. Component Type are items in the “Palette” column
2. if needed, click the “Rename” button in the “Components” column to change the name of a particular component
3. {(empty)} means the property is really empty, devoid of any content.

If everything is alright, the appearance would look like this:

Components

[pisplay hidden components in Viewer Screen
Phone size (505,320} |~] HorizontalArrangement1
— GetRouteAndExposure_B
| Labell

— Reset_Button

] HorizontalArrangement2
Click to get route & exposure Feset g

' | RouteStatusMame

Route . Mil
' | RouteStatusValue

Exposure Calculation Progress @ 0%] HorizontalArrangement3

Exposure ;. Nil |

' | ExposureCalculationProg

' | ExposureCalculationProg
! Honzontal Arrangementd
‘| ExposureName
‘| ExposureValue
@ PRAISE_HK_web]

Motifier]

@ wen

< >

Rename Delete

Media

Upload File ...

2.2.2. Bottom Area (Map Area)
In this area, we first need to drag and drop a map component onto “Screen1”, under the top area, and set the “Properties” as suggested in the following

table:
, , , Change Which Properties
Component Type Inside Which Component | Follow Which Component | Component Name of the Component
Maps / Map Screen1 HorizontalArrangement4 Map1 CenterFromsString:
22.324058, 114.168601
Height: Fill parent
Width: Fill parent
ZoomLevel: 14
Maps / Marker Map {{Follow no one, just drag StartMarker Latitude: 22.3295141"
the component onto the Longitude: 114.1596221"
map is alright}} Visible: Unchecked
Maps / Marker Map {{Follow no one, just drag EndMarker Latitude: 22.3251473'
the component onto the Longitude: 114.1662311"
map is alright}} Visible: Unchecked
Maps / LineString Map {{Follow no one, just drag RoutelLineString StrokeWidth: 4
the component onto the Visible: Unchecked
map is alright}}
Annotation —

1. Free to choose any points on the map, those values are only suggestion

If everything is alright, the appearance would look like this:

Components

[pisplay hidden components in Viewer o GetRouteAndExposure_Butl §

o —
Phone size (505,320) ' Labell
= Reset_Button

HonzontalArrangement2

' RouteStatusName

Click to get route & exposure */RouteStatusValue

HonzontalArrangement3

Route © il _
' | ExposureCalculationProgre

Exposure Calculation Progress © 0%)
' | ExposureCalculationProgre

Exposure ;. Mil |]
HorizontalArrangement4
AT o = E= AR Wk e

e o T Ton LAE T
Kip:Meig=2 3 |LHE ' |ExposureMame

4 ,-'}.. | |

=

' | ExposureValue
A Map1

9 StartMarker

" e e L

T\ QT - | 9 Endmarker

o K F Prince {5 St
”\.{U ot ;Tg “RauteLmeStnng
! | 1 1] 1)

Kadoor]e
il

55'_
8
&

|

5

Q@ PRAISE_HK_web1 |
£ >

|

Mong \
Kokus

}.'-‘4: {fAISEERHoN Rename Delete
! \ (o Ml
R e, S W e b ST, Nt ol
i Leaflet | Map data ® OpenStreetMap contributors i
Media

Upload File ...

The Ul is now completed. Next step will be the implementation of the behaviour.

Step 3. Behaviour Implementation (Blocks Building)

First switch to the Blocks Editor.

3.1. Map1 (Bottom Area)

We use the map to get the start and end points of the route, so we assign the following block structure to the “TapAtPoint” event handler of the “Map1” (as
there are global variables inside this structure, we thus need to initialize them first) :

initialize global - initialize global

initialize global ‘@ initialize global

when [IEIE® .TapAtPoint

=1 global endLatitude ~ = - K

21 global startLatitude ~ § = * &
cali StartMarker » BEE (Kele=1il0)]

set

=T qlobal startlatitude ~ 1N
== 1 global startLongitude » Bl

set

else | call SetlLocation
latitude |
longitude |
set : I
|1 global endLatitude - NI fatitude -
11 global endlongitude + KGRI longitude ~

set

Explanation:

The global variables are used as follows:
e ‘“startLatitude” and “startLongitude” is used to store the current start point chosen by the user
e ‘“endLatitude” and “endLongitude” is used to store the current end point chosen by the user
At the beginning, all are set to an empty string, meaning that nothing is stored in them.

If the user taps any point on the map, the above “Map1.TapAtPoint” event handler will be run, and passed in the latitude and the longitude value of that
point. The two “if” statements check if start and/or end points are already chosen by the user. According to the status (which points are chosen),
respective actions are performed (such as placing markers to the right places, enabling some buttons).

3.2. GetRouteAndExposure_ Button (Top Area)

We click this button to get the route and the corresponding exposure. When clicked, the “GetRouteAndExposure_Button.Click” event handler will be
called, and we will use it to get the route first:

when Click

do
to [get
to I get

to 1=1 global endLatitude -
fo 1= global endLongitude ~

set : to
\‘Eall RequestDirections

Explanation:

Mainly, we use the “Navigation” component to send the direction request in this block structure. First, we set the start and end point (chosen by the user in
the previous step) using the respective “Navigation” component’s properties. Also, set its “TransportationMethod” to “foot-walking” (so that makes it
compatible with the result we got from the exposure calculation of PRAISE-HK API later). Finally, call the “Navigation1.RequestDirections” to send the
request to the service.

3.3. Navigation1 (Non-visible Component)

When the service returns the navigation directions, the “Navigation1.GotDirections” event handler is called.

when R EVFEI RS GCotDirecthons
|) |) ())

The block structure is quite large, so it is disassembled and introduced part by part.

3.3.1.

First, add the following blocks to the event handler:

Explanation:
The first block: “RouteStatusValue.Text” is set to “Obtained” to indicate a route is successfully obtained. The other two blocks simply draw the route out.

3.3.2.

Second, add the following block structure (with a global variable which is initialized outside it):
[Note: here you just need to add the global variable. For other blocks, you will be told when to add them in the explanation below. |

initialize global [

s oreate empty list
| oreate empty list
1| oreate emptly list
| 1| oreate emptly list
initialize locs
zat to gat value at key pathl (&) make a list

in dictionary -

for each| Jinlist get value st key pathl o) mekealist - -

.
o [not foundl
do set to | select list item list get|[Ern e 0=
index | |2 get value at key pattiaPmakealist -~ RS - |+

in dictionary I getii=u ik

sat to | select list item list, get

index L athl’ | make a list

28 midPoint ~E5) 1 make a list -
h select list itemn list i select list item list

inde:x indexx

select list item list i seledt list item list

index index

to | call JGeneratelURL forCalculatingExposure
lengitude | select list item list| get I
index |2
latitude | select list item list| get i1k
index
instant call Now
duration 121 duration - LA 2800]
call Get

zat |Dbﬂ| exposure calculation request oo

| -
-

Explanation:

In order to calculate the exposure, for example, we need to know the locations along the route (these successive locations cut the route into “segments”),
and how long to travel between locations (so that the duration of each segment). That information is located in “Navigation1.ResponseContent”. This
property populates the raw data returned by the service. It is in JSON format (a very popular format for data exchange between devices on the web). App
Inventor converts it into a dictionary (the conversion works because conceptually JSON and App Inventor’s dictionary are pretty much the same thing).

http://ai2.appinventor.mit.edu/reference/blocks/dictionaries.html

Now, let’s look an example of what information is contained in this dictionary:

"properties" |

"meopenta":[

{

"distance" 25708,
"duration":259.5,

"atepa':[

{

"geometry'
"coordinates":[

22.336381,
114. 158015

[

"digtance":175.8,
"duration":11.5,

"type': 11,

"ingtruction”:"Head northwest on JUPNHEF Un Chau Street”,
"name":"TCMFE Un Chan Street",
"way pointa':[

3
]

"digtance":64.9,
"duration":15.6,

”'tYDe“ : 1,

"ingtruction”:"Turn right onto FEF¥7H Fat Teeung Street”,
"name":"3EFEET Fat Teeung Street",
"way pointa':[

"digtance":0.2,
"duration":0.2,

”tYDe“ :D,

"{ngtruction":"Turn left onto AF3EF Prince Edward Road West",
"name":"FFIEF Prince Edward Eoad West",
"way_pointa":[

61,
6
]

"digtance":0,
"duration":0,

"type': 10,

"inztruction":"Arrive at #AFIEFH Prince Edward Foad West, straight

"name":"-

"way_pointa":[

62,
62

22.336706,
114. 157582

22.337037,
114. 157163

22,3374,
114.156709

22,337855,
114.157104

22,323735,
114, 166733

22323736,
114, 166735

]
]

"type":"LineString”

ahead",

Please be noted that some of the information is deliberately left out as it is irrelevant to the issue we are dealing with currently.

Firstly, you may notice there is a “segments” list to which the path is: Dictionary[“features”] = List{1] = Dictionary[“properties”] 2>
Dictionary[“segments”]. But indeed it is the “steps” list inside the “segments” list that contains the actual segments. The path to it is:
Dictionary[“features”] = List[1] = Dictionary[‘properties”] = Dictionary[*segments”] = List[1] = Dictionary[‘steps”]. Now let’s take a look at each
step. Inside each step, there is a property called “duration”, and also another property called “way_points”. The “way_points” contains a pair of points
inside, astute readers may ponder they are corresponding to start and end points respectively. Yes, they are right. But what does point 0 and 3 mean? The
answer lies at the “coordinates” property to which the path is: Dictionary[‘features”] = List{1] = Dictionary[‘geometry”] = Dictionary[“coordinates”].
There is a list of coordinates(a pair of latitude and longitude) inside it. Point O is the first one in the list, and point 3 is the fourth one.

Armed with this new knowledge, we are finally in position to understand the block structure above. And from now please start to add the blocks to the
editor as they appear.

It first initializes the local variables that will be used.

£ pCR] coordinateslist § O
initialize local to
initialize local | to |

create empty list
create empty list
create empty list
initialize local ({1 =) to
initialize local G) to |

create empty list

B a)le))l)

Note: all the blocks below should be placed inside the “in” section of this block

Next, we populate the “coordinatesList” variable with the items inside the “coordinates” property (this is why it is called “coordinatesList”). In order to do
this, we use one of the dictionary functions: “get value at key path” (click the link to pay a visit to the reference if you don’t know what it is). As described in

o

the last paragraph, the path should be: “features”, 1, “geometry”, “coordinates”, and it is indeed displayed exactly as it is in the block structure above.

set [LRENMECONS M to get value at key path () make alist | “ (EEUEY
@
W geometry
QETSELERAE Navigationi - I
or if not found | K not found

After setting up the “coordinatesList’, we can now deal with extracting data from the “segments”. Like the “coordinatesList”, the “segments” (steps) list can

be obtained using the same dictionary function, with the path: “features”, 1, “properties”, “segments”, 1, “steps”. We want to loop through this list to get

details of each segment, so we pass it to a “for” control block.

foreach FC 0 inlist get value at key path §f (2] makealist *

I properiies §
3 segments &

in dictionary . ResponseContent *

or if not found

Note: all the blocks below should be placed inside the “do” section of this block

Each “item” in the “for” loop represents a “segment”. And for each “segment”, we get and set the “startPoint” with the following blocks:
set BIEUIECTIMN to | select list tem list W0 coordinatesList +

index (o

get value at key path B (<] make a list

in dictionary

or if not found

The “startPoint” coordinates are actually stored in the “coordinatesList”, but we can use the “way_points” property in the “segment” (“item” variable) to get
them. Beware that point 0 in the “way_points” means index 1 in the “coordinatesList”, so we have to “+1” to get the correct index.

For the “endPoint”, the procedure to get it is similar to the “startPoint”.

http://ai2.appinventor.mit.edu/reference/blocks/dictionaries.html#get-value-at-key-path

set to | selectlistitem list get [LLGIEICEEEET
INGEXE. (9) " get value at key path | (o) makealst® “CEEELD” | '

in dictionary

or if not found

To calculate the exposure, we have to pick a point in the segment for approximation. And usually the most reasonable approximation is the midpoint. To
get the midpoint, we just need to calculate the average of the latitude and longitude, as follows:

=18 midPoint + § x) make a list - - - -
8 L select listitem list get EENECLER + | select listitem list | get (ELEAIIED

select list item list getm' + [select listitem list | get EGEELIRS

Now, we have a position (midpoint) to represent the segment, we also need its duration:

set fo getvalue forkey | *
in dictionary @ get LIRS
or if not found | * .

Finally, for each segment, we call “PRAISE_HK web1.GenerateURLforCalculationgExposure” to generate the correct URL. We put the “midPoint” &
“duration” we got above into respective parameters. Be also noted that the current time instant (by calling “Clock1.Now ") is put into the “instant”
parameter, so the exposure we get is a real-time exposure. And the “duration” variable we have is in unit of “second” while the “duration” parameter only
accepts unit of “hour”, so we convert it by dividing 3600. After the URL is set, we send the request using the “Web1.Get” method. And add one to the
global “exposure_calculation_request_count” variable, for recording down how many web requests are made in total.

S B = LRSS GenerateURLforCalculatingExposure

longitude select list item list

index
latitude select list tem list
index

instant | call Now
duration W24 duration * W

call Get
= | global exposure_calculation_request_count * BEEEREINEE T o103 exposure_calculation request count ['

3.3.3.

There is a rare situation when the “Navigation” component fails to get directions. When this happens, the “Screen1.ErrorOccured” is called.

20 when [EFEZEED ErrorOccurred
) |) |

call ShowAlert
nofice | get QUEEEENEINS

Explanation:
Inside the handler, we simply call the “Notifier1.ShowAlert” to show the error message (got from the input argument) to the user.

3.4. Web1 (Non-visible Component)

3.4.1.

When there is a response from the web, the “Web1.GotText” event handler will be called. So, we use the following structure to deal with it (with a pair of
initialized global variables it depends on):

* Note: This handler will be called multiple times as we have made multiple web request

WLz D] exposure_calculation_progress_counter |G7IRI 0
141 = 4 o] = || exposureValidity [0 true «

3.4.1.

when _GofText
ol) | | responseContent
SHNE G T giobal exposureValidity + |l and - MU PRAISE HK web1 » Gl Tt

(0 BRES number? - B ExposureValue - [Text - |
. to m

ExposureValue - |1 Text - Jab e W PRAISE HK web1 « JeRI=%
respo

=1 global exposure_calculation_progress_counter + RESEREIREE) ohal exposure_calculation progress_counter © | +

set . 0 &z join 1
- 2l CIZES » =i global exposure_calculation_progres ! : al e e il eqjLe - m

L %

=T giobal exposureVaiidity * 1
set : P Dtz invaiia |
L —

Explanation:

Inside this handler, we first check (the first “if’ statement) if both the value in the “exposureValidity” is true and the result returned by calling the
“‘PRAISE_HK web1.IsReturnedExposureValid” method is also true. This method checks if the returned response is indeed a valid one. We just need to
put all elements of the response into it (i.e. the response code, type and content), then you will be given the answer. If this is the first time the handler
being called, the “exposureValidity” must be true (because it is initialized to be true), then only the calling result needs to be considered.

)i EJ T lobal exposureValidity * §L and * R IR PRAISE HK web1 v BEntatiir e o
responseCode | get

responseType | get TN
responseContent | get

But if somehow the call fails even just once, the “else” section will be executed. Inside the “else” section, the “exposureValidity” is set to false. With it set to
false, all subsequent “if” statement checks will be false automatically, and the calculation process stops. So, what does this mean? This means just one
incorrect response can make the whole exposure calculation invalid.

set i false -
set to g Data Invalid

| -

else

Anyway, if the first “if” statement is passed, we can begin or continue the exposure calculation process. The calculation is simple, we just add the
accumulated value (which is stored in “ExposureValue.Text”) to the new value got in the current response (the result returned by calling the
‘PRAISE_HK web1.GetExposureValue” method). Please be noted that if this is the first time the handler is called, the value inside “ExposureValue.Text”
is “Nil”, which is not a number and cannot be used for addition. This is why the second “if” statement exists. It converts the string value “Nil” to the
numerical value zero.

. . -1l PRAISE HK web1 » JeEimin i

responseContent | get B30

Finally, we update the progress. Here we use two global variables: “exposure_calculation_progress_counter” & “exposure_calculation_request_count” to
record the progress. And then display it using the “ExposureCalculationProgressValue.Text”. This value is shown in unit of “percentage”, so we have to
perform some simple mathematical conversion.

exposure calculation_progress counter * J0) o [l global exposure_calculation_progress_counter * | + -

to . I round |) 1 X
: =4 global exposure calculation progress counter * JRAIESGIET global exposure calculation request count * 8 100

There is a rare situation when there is no response from the web. We handle this using the “Web1.TimeOut” event handler.

when TimedOut

call Showhlert
notice | ° '

-

Explanation:
Inside the handler, we simply call the “Notifier1.ShowAlert” to tell the user there is no response from one of the requests.

3.5. Reset Button (Top Area)

We click this button to reset the app to its initial state. When clicked, the “Reset_Button.Click” event handler will be called, and the blocks for resetting are
inserted:

Vs Reset Button + P80
1o s E global startLatitude + LG ‘B’

1 global starfLongitude - |} (NN J
I global endLatitude - LM &

=11 global endLongitude + (oI K

17 global exposure_calculation_request_count ~ Kl 0
I global exposure_calculation_progress_counter + Js
|1 global exposureValidity - | 51|

Explanation:

Nothing complex here, all the components (both visible and non-visible) and the global variables are reset to their initial states, if they are set to another
state during the process.

Conclusion

This tutorial serves as a proof that PRAISE-HK service can be used with App Inventor. So, now even average secondary students or non-coders can produce air
quality aware apps!

