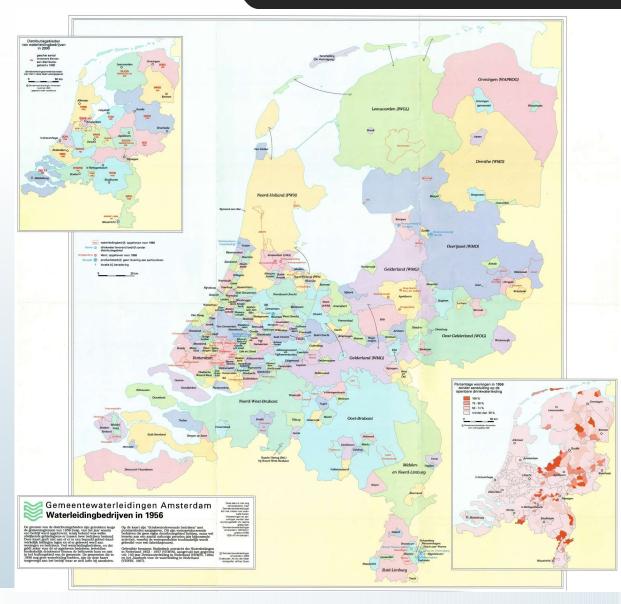
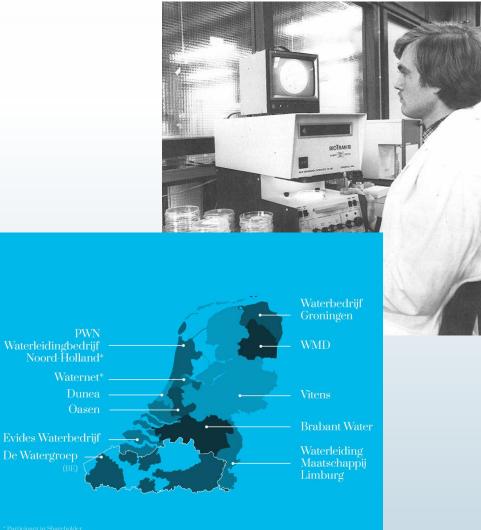
9 April 2019, Hongkong

Smart Design and Operation of Water Distribution Networks in the Netherlands

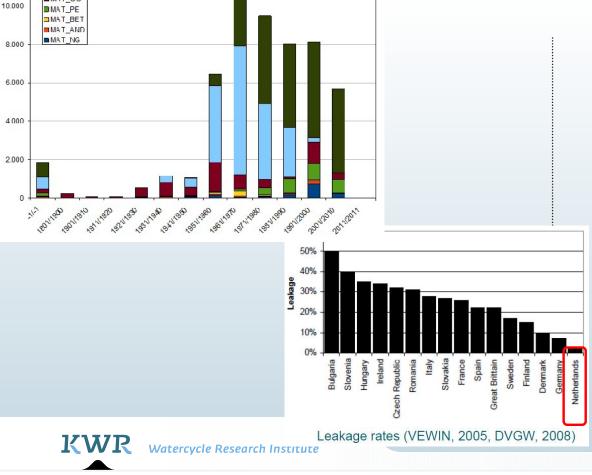

Mirjam Blokker

Bridging science to practice

From Kiwa to KWR


Kiwa N.V. established in 1948 by the Dutch drinking water sector

Joint quality control of water mains' materials and fittings (Rijswijk)


1971: Set up of research department
1972: Joint research programme
1979: Nieuwegein location opened
2006: Splitting of certification from Water Research
2008: Kiwa Water Research becomes KWR
2016: First international shareholder

Watertransportmaatschappij Rijn-Kennemerland (WRK)

Drinking water distribution in the Netherlands

Dutch drinking water distribution network

12 000

MAT_PVC MAI_AC MAT_CC

Network:

٠

•

- 120,000 km
- 50% PVC; 30% AC; 10% CI
- Ca. 3% leakage
- Replacement from 0,5% per year \rightarrow 1% per year

Research questions:

- Which mains to replace when?
 - How to balance investments, performance and risk?
- How to maintain high standards?
- How to work in a busy urban environment?

PRACTICE

Focus on quality, long term

Fee covers all cost (ca. €2,- /m³)

No residual chlorine

Low leakage

• <5 %

low burst rate

• 0.08/km/year

Low number of customer complaints on discolouration

• <1 per 1000 customers per year

RESEARCH based vision on:

Network design

- Blueprints
- Self-cleaning networks

Network operation

- Cleaning (flushing)
- Valves & hydrants maintenance

Network replacement

- Failure registration
- Inspection
- Models

Current **RESEARCH** on:

Asset Management:

- replacement planning for AC pipes
- failure and inspection data

Water quantity

• Demand model (SIMDEUM)

- QMRA in the distribution network
- Biological stable water
- Sensor placement and interpretation

PRACTICE

Focus on quality, long term

Fee covers all cost (ca. €2,- /m³)

No residual chlorine

Low leakage

• <5 %

low burst rate

• 0.08/km/year

Low number of customer complaints on discolouration

• <1 per 1000 customers per year

RESEARCH based vision on:

Network design

- Blueprints
- Self-cleaning networks

Network operation

- Cleaning (flushing)
- Valves & hydrants maintenance

Network replacement

- Failure registration
- Inspection
- Models

Current **RESEARCH** on:

Asset Management:

- replacement planning for AC pipes
- failure and inspection data

Water quantity

• Demand model (SIMDEUM)

- QMRA in the distribution network
- Biological stable water
- Sensor placement and interpretation

Bridging science to practice

No residual chlorine Best practice

- 1. Use the best source available:
 - microbiologically safe groundwater,
 - surface water with soil passage,
 - direct treatment of surface water in a multiple barrier treatment;
- 2. Use a preferred physical process treatment (such as sedimentation, filtration and UV-disinfection). If necessary, also oxidation can be used by means of ozone or peroxide, but chlorine is avoided;
- 3. Prevent ingress of contamination during distribution;
- 4. Prevent microbial growth in the distribution system by production and distribution of biologically stable (biostable) water and the use of biostable materials;
- 5. Monitor for timely detection of any failure of the system to prevent significant health consequences.

Smeets, P., Medema, G. J. and van Dijk, J. C. (2009). "The Dutch secret: how to provide safe drinking water without chlorine in the Netherlands." *Drink. Water Eng. Sci.*, 2, 1-14. <u>http://www.drink-water-eng-sci.net/2/1/2009/dwes-2-1-2009.html</u>

barriers against ingress of microbial contaminants

PRACTICE

Focus on quality, long term

Fee covers all cost (ca. €2,- /m³)

No residual chlorine

Low leakage

• <5 %

low burst rate

• 0.08/km/year

Low number of customer complaints on discolouration

• <1 per 1000 customers per year

RESEARCH based vision on:

Network design

- Blacprints
 - Self-cleaning networks

Network operation

- Cleaning (flushing)
- Valves & hydrants maintenance

Network replacement

- Failure registration
- Inspection
- Models

Current **RESEARCH** on:

Asset Management:

- replacement planning for AC pipes
- failure and inspection data

Water quantity

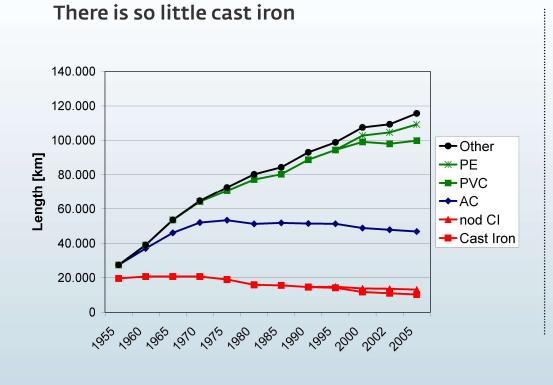
• Demand model (SIMDEUM)

- QMRA in the distribution network
- Biological stable water
- Sensor placement and interpretation

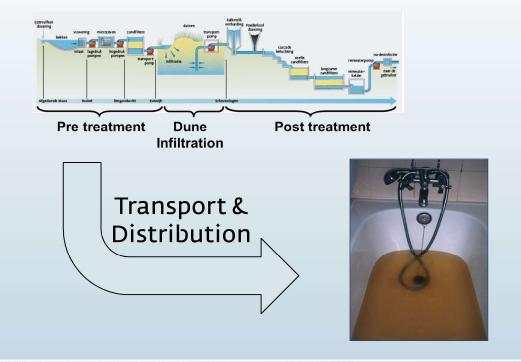
The story of water quality and asset management Once upon a time.....

There was a water quality problem

With an obvious cause

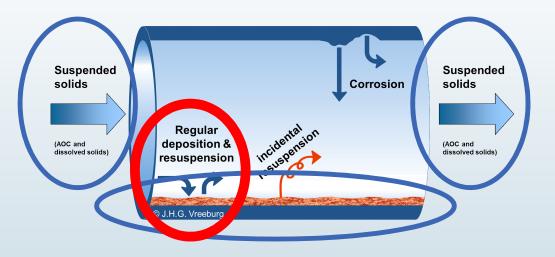


KWR

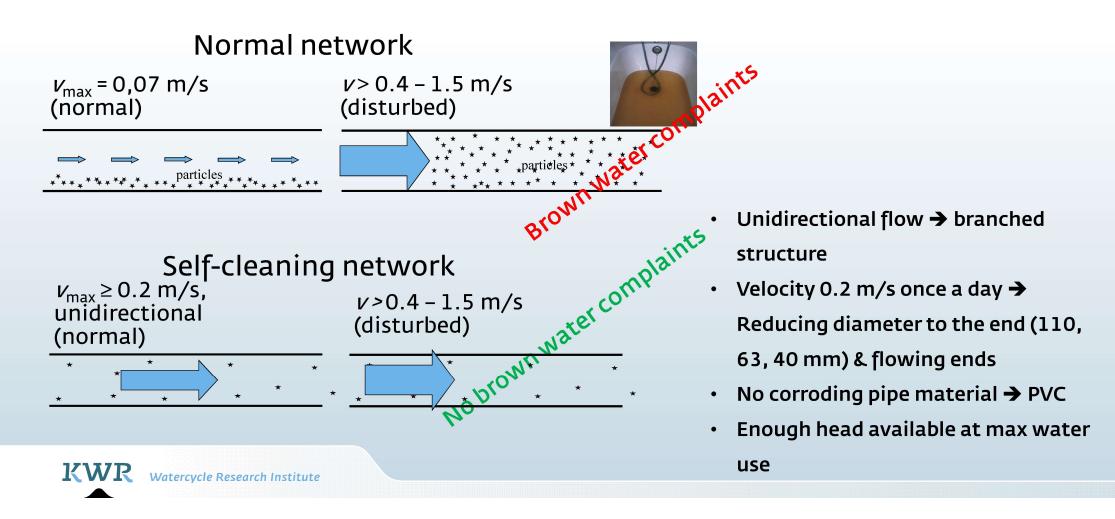

Watercycle Research Institute

KWR

However....



Something happens between treatment and distribution



Consequences of particle related processes

- Discolouration only occurs in the presence of sediment: Controlling the sediment = controlling the discolouration
- Balance between incoming and outgoing sediment indicates the sediment build-up
- Hydraulic processes govern the deposition and resuspension

Self-Cleaning Network

Self cleaning networks Characteristics

Self-cleaning networks:

- Last part of the network
- Unidirectional flow, no stagnant zones
- Minimum flow at peak hour

Leading to

- Shorter lengths (no loops) and smaller pipe diameters -> cheaper network
- Less discolouration incidents (no flushing)
- Good security of supply
- Smaller hydrant capacity

Vreeburg, J. H. G., Blokker, E. J. M., Horst, P. and van Dijk, J. C. (2009). "Velocity based self cleaning residential drinking water distribution systems." *Water Science & Technology*, 9(6), 635-641, doi:10.2166/ws.2009.689.

PRACTICE

Focus on quality, long term

Fee covers all cost (ca. €2,- /m³)

No residual chlorine

Low leakage

• <5 %

low burst rate

• 0.08/km/year

Low number of customer complaints on discolouration

• <1 per 1000 customers per year

RESEARCH based vision on:

Network design

- Blueprints
- Self-cleaning networks

Network operation

- Cleaning (flushing)
- Valves & hydrants maintenance

Network replacement

- Failure registration
- Inspection
- Models

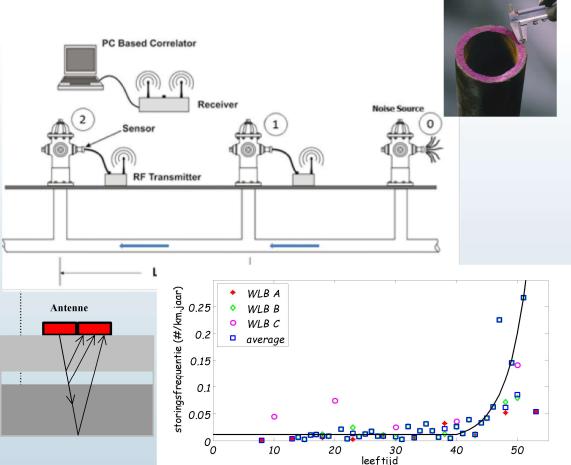
Current **RESEARCH** on:

Asset Management:

- replacement planning for Acpipes
 - failure and inspection data

Water quantity

• Demand model (SIMDEUM)


- QMRA in the distribution network
- Biological stable water
- Sensor placement and interpretation

AM: replacement planning of AC pipes Current research (1)

Combining information:

- Pipe degradation mechanisms: strength lost due to internal / external cement leaching
- Failure registration data (USTORE)
- Exit assessment on leaching (phenolphtaleine staining)
- Inspection with Georadar, Echo pulse

Beuken, R., Horst, P., Diemel, R. and Mesman, G. A. M. (2014). "Mains condition assessment by echopulse, a validation of results." *16th Conference on Water Distribution System Analysis, WDSA 2014*.

Registration of bursts with USTORE

testered lastice testered lastice	 • 8 drinking water companies • 18.000 bursts • Developments: • Quality system • Belgium companies joining
Storingsfrequentie AC leidingen 0,5 0,4 0,3 0,2 0,1 0 1950 1960 1970 1980 1990	PWN: Aantal storingen PVC-buis PWN: Aantal storingen PVC-verbinding PWN: Aantal storingen PVC-buis PWN: Aantal storingen PVC-verbinding PWN: Aan

Bathtub curve PVC,

.

- Younger mains: joints
- Older mains: joints and pipes

KWR

PRACTICE

Focus on quality, long term

Fee covers all cost (ca. €2,- /m³)

No residual chlorine

Low leakage

• <5 %

low burst rate

• 0.08/km/year

Low number of customer complaints on discolouration

• <1 per 1000 customers per year

RESEARCH based vision on:

Network design

- Blueprints
- Self-cleaning networks

Network operation

- Cleaning (flushing)
- Valves & hydrants maintenance

Network replacement

- Failure registration
- Inspection
- Models

Current **RESEARCH** on:

Asset Management:

- replacement planning for AC pipes
- failure and inspection data

Water quantity

• Demand model (SIMDEUM)

- QMRA in the distribution network
- Biological stable water
- Sensor placement and interpretation

Drinking water

