Building Resilience through Sustainable Urban Water Management, HKUST Business School Central, 9 April, 2019

Disinfection of Treated Sewage by Chlorine Jets

Joseph Hun-wei Lee

The Hong Kong University of Science and Technology

Outline

- 1. Harbour Area Treatment Scheme (HATS) disinfection for protection of public health
- Field scale model for study of mixing and rapid chlorine demand in disinfection of primary treated (CEPT) effluent
- 3. Theoretical modelling of chemically reacting dense chlorine jet optimal chlorine dosing strategies
- 4. Conclusions

New World Harbour Race – **16 October, 2016** (1.5 km; 2,400 participants)

Hong Kong's beach grading system 香港海灘水質評級系統				
Grading	Beach water quality 泳灘水質	E. coli * (counts /100 mL) 大腸桿菌	Minor illnesses rate ** (cases per 1000 swimmers) 發病率	Water Quality Objective Compliance/ Exceedance
1	Good	≤ 24	Undetectable	Compliance
2	Fair	25 - 180	≤ 10	
3	Poor	181 - 610	11 - 15	Exceedance
4	Very poor	> 610	> 15	
 *Weekly Beach Grading: Geometric Mean <i>E. coli</i> level of the 5 most recent samplings (C_{INECS}) Annual Beach Ranking: Geometric Mean <i>E. coli</i> level of all samplings in bathing season (March - October) ** Skin and Gastrointestinal illnesses (Cheung et al. 1990) Water Quality Objective: E coli < 180 counts/100 ml 				

Motivation for Chlorine Dosage Optimization

- Chlorine has to be imported from mainland China - subjected to uncertainties in supply, export regulations, safety during transport.
- 2. Large storage tanks are required to store the concentrated chlorine (NaOCI) .
- Chlorine dosage optimization is necessary to ensure sustainability: reduce energy/chemical consumption and cost
- 4. Excessive Total Residual Chlorine (TRC) and Disinfection by-products (chlorinated organics) are harmful to environment

NaOCI day tanks

